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Abstract—A model of droplet evaporation in clusters and the exchange processes between the cluster and
the gas phase surrounding it are presented. This model is developed for use as a subscale model in
calculations of spray evaporation and combustion and thus describes only global features of cluster
behavior. The gas pressure in the cluster remains constant during evaporation and as a result the volume
of the cluster and the drop number density inside the cluster vary. Two turbulence models are considered.
The first one describes cluster evaporation in surroundings initially devoid of turbulence and turbulence
is allowed to build up with time. The second model describes cluster evaporation in surroundings where
turbulence is present initially. The results obtained with these models show that turbulence enhances
evaporation and is a controlling factor in the evaporation of very dense clusters; examples are shown
where with the first turbulence model saturation was obtained before complete evaporation whereas the
opposite was obtained with the second turbulence model. As the initial air/fuel mass ratio increases, both
turbulence history and the initial relative velocity between drops and gases can control evaporation. It is
shown that the evaporation time decreases with an initial increase in turbulence levels or relative velocity.
When the initial air/fuel mass ratio increases further and the initial drop number density falls within the
dilute regime, neither of the above parameters can control evaporation. Moreover, the evaporation time
decreases with the decreasing size of the cluster for dense clusters of drops, whereas for dilute clusters of
drops the size is not a controlling factor. The practical implications of these results are discussed.

1. INTRODUCTION

THE MATHEMATICAL formulation of spray combustion
is extremely complicated due not only to the great
number of phenomena to be described but also due
to the fact that the space scales involved in these
phenomena are vastly different. For example, a few
of the most obvious scales are : the scale of the com-
bustor itself, the many turbulent scales associated with
turbulence build up and decay, the scale of droplet
interactions and the scale of the drops themselves.
These scales vary by many orders of magnitude from
the largest one to the smallest one and thus it is obvi-
ous that an accurate mathematical description at all
scales is impractical. Instead, a sound approach is to
describe in detail the macroscale where many of the
phenomena of interest to engineers involved in the
design of combustors occur, and to associate and
couple to this description that of phenomena occur-
ring at scales much smaller than those of immediate
interest. This second part of the formulation is called
a subscale or subgrid model because the phenomena
to be described occur at a scale much smaller than
that of the grid size used to computationally solve the
macroscale problem. By the very nature of this two-
level formulation, the subscale models are more
approximate than the macroscale models and lack the
detail that the latter one must have in order to be
useful.

The work described here pertains to a subscale
model to be used for the description of spray evap-
oration in a combustor. Within the frame of this
approximation it is intended that the gas phase in
the combustor be described by the solution of the

macroscale equations at certain grid points; this is an
Eulerian approach. In contrast, the spray is par-
titioned into clusters of drops that have a size smaller
than that of the grid, and each cluster is followed in
its trajectory; this is a Lagrangian approach. The
coupling between the two formulations is achieved
through the transfer of mass, species and heat to and
from the cluster. The partition of the spray into clus-
ters as explained above is not an artifact because it is
corroborated by experimental evidence [1].

What is described below is only the subgrid model
uncoupled from the macroscale formulation. This
means that the properties of the gas phase sur-
rounding the cluster of drops are assumed known, and
what is of interest to describe, solve for and analyze
is the behavior of a cluster of drops in this given
environment.

2. MODEL FORMULATION

Figure 1 shows the situation under consideration.
A monodisperse collection of uniformly distributed
droplets of a single-component volatile compound
is immersed into gases at a higher temperature and
exposed to a convective flow. As a result, heating of
the drops and evaporation occurs. At each instant of
time the envelope of the cluster of particles is called
the surface of the cluster. The volume enclosed by the
surface is called the cluster volume ; it contains both
drops and gas. Since the pressure is maintained con-
stant during this process, the volume of the cluster
will change with time.

The point of departure of the present model is the
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NOMENCLATURE
A, transverse area of the cluster [cm?] t time [s]
Ay cross-sectional area of a drop [cm?] r radial coordinate centered at a drop’s
a radius of the sphere of influence [cm] center [cm)]
C —mj[4n(p,DY*R°] F radial coordinate centered at the cluster’s
C, specific heat at constant pressure - center [cm]
fcalg 'K '] R, a/R®
AC, fitted C,— C,, for the saturation pressure Sh Sherwood number
curve [calg 'K '] u velocity fems™']
Cr constant vV volume of the cluster [cm’]
D diffusivity [em?s™'] v radial gas velocity inside the sphere of
E, rate of enthalpy transfer, equation (19) influence [cms™']
E,; rates of enthalpy transfer for turbulence w ‘trapping factor’, equation (13)
models 1 and 2 (j = 1 and 2), w; molecular weight [gmol ']
equations (22) and (25) ¥ r/R°
H enthalpy [cal] z r/R.
Ho 4R%pZLy,
H  H/H«

] Greek symbols
h specific enthalpy [calg ']

. o constant for the Langmuir-Knudsen
hS enthalpy of the gases at T, [calg™'] evaporation law, 4n
K" enthalpy of the liquid at T, [cal g~'] . W, o, ’
L latent heat of evaporation [calg™ 'l r generdii: function representing 0 or Y,
Le  Lewis number £ evaporation efficiency, equation (29)
I turbulent length scale [cm] 0 C,.T/L,,
M rate of mass transfer, equation (21) i chglductivity [calem™'s 'K ~]
M;, rate of species i transfer, equation (20) L viscosity [gem™~"s™ ]
M;,; rate of species i transfer for turbulent v kinematic viscosity, u/p fom®s™']
models 1 and 2 (j = 1 and 2), p density [gem ™3]
equations (23) and (26) p; 0/ Prer

m evaporation rate, — (1/N) dm,/d¢ [gs™'] Pt PWeCrl(R*Lun)

m,  mass of all drops in the cluster [g] o 1—y
mg,  mass of fuel vapor [g] . o
m, mass of gases inside the cluster [g]
My AnpF R .
W MM, Subscripts .
N total number of drops a at th.c edge of the sphere of influence
n drop number density [em ] ag  ambient gas .
Nu  Nusselt number bn normal boiling point
P pressure [atm] ¢ cluster
Pr Prandtl number ch characteristic value
Re  2Ru v} d  drop
Re,  20Ac(uyfug)/m)" *us /vy Fv  fuel vapor
R¥  universal gas constant g gas
[atm cm*mol ™' K '] ! liquid
R,  universal gas constant [calmol 'K ™'] ¥ relative
R radius of the cluster [cm] 5 drop surface.
R RIR®
R, R/R® Superscripts
R drop radius [em] 0 in the far field of the external gas phase
T temperature [K] 0 initial value
toq RY/D* f final: either when R, = 0.04 or when
Tt Lon/Che evaporation stopped.
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FiG. 1. Sketch of the physical situation modeled.

model of convective drop evaporation given by ref.
[2]. In that model the cluster of drops was adia-
batically insulated from the surroundings and the
drops were moving together as a rigid entity through
the flow. As a result, the gas pressure inside the cluster
varied during evaporation. In contrast, in the present
model there is mass and energy exchange across the
surface of the cluster and drops move with respect to
each other. If they move away from each other, then
expansion occurs; if they move towards each other
than contraction occurs. Thus, in this new configur-
ation the drop number density becomes a dependent
variable whereas the pressure becomes a constant,

The main assumptions regarding the liquid and gas
phases have been described in detail elsewhere [3] and
thus will not be discussed here. Similar to the study
of ref. [3], in the present study each drop is considered
surrounded by a sphere of influence the radius, a, of
which is the half distance between the centers of two
adjacent drops. The ensemble of these spheres of
influence and the space between them constitutes the
cluster volume. However, whereas in ref. [2] the value
of the radius of the sphere of influence was a constant,
here it is a variable with time. Moreover, following a
previous study [2], the present formulation has three
components: (a) the description of mass, species and
enthalpy conservation inside the sphere of influence
of each droplet; (b) the description of mass, species
and enthalpy conservation in the cluster volume; and
(c) the description of convective effects using differ-
ential equations expressing momentum conservation
for the gases and the drops. The present description of
convective effects is unchanged from ref. [2]. However,
since the assumption of constant gas density inside
each sphere of influence [3] is no longer valid, the
solution of the convective diffusive equations inside
each sphere of influence changes from its simple
expression [4] to

R, dy
() =C +Cyexp| Clp, D)™ .0 H
14 &

HMT 31:8-H
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where C, and C, are integration constants, Now since
Le, = 1, p,D = pu/Prand using the classical expression

@

with the assumption Pr = 0.8 one obtains the fol-
lowing solution for 6, :

#= p8®

: dy
8:(3) = Co+Copexp [C(B?)G'ssj 326% 65:} 3)

3

where C,y and C,, are functions of 6, and 6,,. Since
following the Schvab-Zeldovich approach Y, is a
linear function of 6, once 6 is known so are the
various Y/sintermsof y, ¥, and ¥;,.

The derivation of equations (1)-(3) is the only
novelty here in the treatment of the conservation laws
inside the sphere of influence when compared with the
formulation of ref. [2]. Both boundary conditions and
evaporation law at the surface of the drops are the
same as in ref. [2]. Moreover, the energy conservation
for the liquid drops is also the same as in ref. [2]
in that it considers the liquid temperature as being
transient and a function of the radial position.

Note that the right-hand side of equation (3) is
not analytically integrable and 0(y) can no longer be
simply expressed as a function of y as in ref. [4]. This
is due to the relaxation of the assumption that p,D is
a constant. With this new formulation the equations
must be solved numerically, unless some approxi-
mation is made in order to evaluate

dy

Z(y) = (e;)"-“£ ’ S @

A convenient way to evaluate Z(y) is to use the weak
evaporation, constant viscosity limit solution

Oy, =0,+6,R, /[y &)

and to perform the integration analytically. This
approximation preserves both the concavity of the
actval temperature and its boundary values at r = R,
and R, and therefore is expected to fit well within the
present model which takes a qualitative approach to
modeling rather than a quantitative approach. This
approximation is also used elsewhere [5]. The quali-
tative approach used here is specifically concerned
with global effects and does not attempt to describe
accurately spacial dependence of the dependent vari-
ables. Moreover, the present formulation is quali-
tatively accurate only when the total number of drops,
N, is much larger than unity.

To complete the description of this formulation,
the following is discussed below : (1) transfer of mass,
species and enthalpy from the cluster to the external
gas phase; (2) the behavior of the external gas phase
and transport of mass, species and enthalpy to the
cluster; and (3) the conservation equations for the
entire cluster.



1658

(1) Transfer from the cluster to the external gas
phase

The challenge here is to describe in a simple way
the mass, species and energy transfer from a cluster
with a moving boundary using a model that does
not discriminate between the various drops and
their associated surrounding gas phase in the 7-
direction (although nonuniformities in r are taken
into account).

The global unsteady continuity equation inside the
sphere of influence yields

d ‘o 5 ,dR
i [47[] Pt dr:l = 4nR*(p,v), —4nR a5 P

R
d
—4na2(pgv)ﬂ+4na2di:pg.(, 6)

Since [dR/dt| « |(v)]

d [24 . .
i [4n J; per? dr] = My N

where

R da
Hoss = 4na” {(pgv)a — Pea EZJ' ®)

Two physical limits can occur.
(a) The strictly steady situation where
4nR*(pyv), = 4na(pyy), 9)

and according to equation (8) one obtains

(10)

. . 2 a
Moy = m—A4na Epgw
In this limit maximum new vapor passes through the
sphere of influence and escapes to ambient. Then

=
V), = ——5—
Y 4natpy,
(b) The limit where all new vapor is trapped into
the sphere of influence as its surface moves. Then

Mgy = 0 (1)
and
da
), = a (12)

The physical reality is somewhat in between these two
limits. We thus define a ‘trapping factor’

W = m, [(my+m,) (13)

and model

m da
@ = (U=W) o+ W

14
4na’p,, (14)

Thus this expression gives the velocity of the gases at
the edge of the sphere of influence in the general case
and also satisfies the above two limits because: (i) in
the dilute limit my « m, and W — 1 (ii) in the strong
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evaporation, strictly steady, limit W — 0 becausc
M, < M.

Since in this model there is no distinction between
the surface of the cluster and surface of the spheres of
influence the mass and enthalpy loss from the cluster
are respectively Ny, and Niy, .. The effect of the
convective low on drop evaporation is contained in
m which is the solution of the purely diffusive evap-
oration case multiplied by a corrective factor as
described in ref. [2].

(2) The behavior of the gas phase external to the
cluster and transport to the cluster

In order to be consistent with the treatment of con-
vective drop evaporation of ref. [2], which is still pre-
served here, where convective effects are considered
as a correction to diffusive evaporation, the external
gas phase is first considered to have a purely diffusive
behavior and Y, and @ satisfy

S PR 15
Par\” dar )" ()
The solution of this equation is
LR
(A = (ru—rf)*’;wtr’ (16)
assuming continuity for I" at # = R. Thus
ol I
M,lév d?‘,; = 4.0, *Og“)ﬁ (17
p> M prvr vy 18
—Ps d7 ﬁ—pg (Y, iu)ﬁ' (18)

Similarly to the description of convective effects of
ref. [2], these are seen as a contribution both from the
individual droplet and the entire cluster.

The contribution to heat transfer from the indi-
vidual drops is due to the cluster ‘porosity’. Consistent
with the present homogeneous description for the
cluster in the 7-direction this contribution for heat,
species and mass is modeled as

El = (P;h; “pgahga)urAc
Mil = (Pg YAOL Vpgu ylu)ul’AC
M = (p; ‘pgu)urAC‘

(19)
(20
h

The heat transfer to the entire cluster is highly
dependent upon turbulent transfer between the sur-
roundings and the cluster. Because of this, it is very
important to understand how the history of tur-
bulence with respect to that of evaporation influences
the behavior of the cluster. For this reason, two tur-
bulence models are considered and compared here.
Since in our calculations the coordinate system is fixed
with the state of the gases at ¢ = 0, u) = 0 and thus in
the first model the drops do not act initially as an
entity, but rather as individuals and turbulence builds
up with time if the cluster ‘porosity’ diminishes sig-
nificantly. In this model the rate of heat and specics
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transfer integrated over the entire surface of the
cluster is

o0

jl N
E2 1= 4n_g_Lbn NucﬁR(ego_Gga) (22)
’ Coe Ua

Uy ~
My, = 47t(PgD)°°Shc;fR(Y?° —Ya).
d

(23)

Under the assumption of similarity between heat and
mass transfer Sk, = Nu.. In the computations further
presented here the value of Nu, was taken to be that
for flows around a sphere up through the turbulent
range [6]

Nu, = 14+0.19Pr"3 Re¥/5 24

where Re, is based upon the length scale {4.(u,/us)/7]*’
and velocity u,; [2]. The quantity A.(u,/us) is an
effective cluster area which was found to be im-
portant in determining the drag due to the surface
force on the cluster as a result of its motion through
the gas [2]. The ratio u,/u, is in fact equal to the non-
slip displacement gas flow divided by the total gas
flux.

The second turbulence model used here is different
from the first one in that the turbulent part of the
Nusselt number is changed in such a manner as to be
consistent with the cluster surroundings being initiaily
turbulent. This is done by making the turbulent con-
tribution of Nu, proportional to 4 rather than u,. In
this second formulation

ie C .
E,, =4n"%L,, (ﬁ + —TPrReT> R(0r —0,)
’ c Uy 2

g

(25)
My, = 4n(p,D)" <# + %Pr ReT> Rre—v.)
d (26)
where
Rer = 2p,, Ru, [y 27
Cr=1/R (28)

and Cr is a constant.

(3) The conservation equations for the entire cluster
Under the quasi-steady assumption these equations
are as follows.

(a) Conservation of total mass of liquid fuel. This
states that the mass of liquid fuel at time # is equal to
the initial fuel mass minus the mass evaporated from
the drops. Once nondimensionalized the equation
becomes

e=1-R2. (29)

(b) Conservation of total gaseous mass inside the
cluster. The gaseous mass at time ¢ is the sum of the
initial gas mass, the mass evaporated from the fuel,
and the mass entering the cluster of drops minus the
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mass loss from the cluster to the surroundings. This
is expressed as

g:i% - Nm_leoss +0’g_p$)urAc (30)
where
a 4 3
m, = Nf Anrp () dr + (V— ”3” N)pga a1
R

and my, is given by equations (8) and (14). To cal-
culate the density integral, the equation of state is
invoked to obtain

“ 2y PG o [ yidy
L”g(’)’ =R, X L BTty OO
where
YFv+ Yag = 1 (33)

was used. The form of equation (31) becomes
integrable when 8, is given by the approximation of
equation (5) and Yg, is obtained in a similar way.
In this manner m, can be approximated by an ana-
lytic, non-linear function G

mg = G(RZ’ Rl’ n, 9@9 ggsy YFva, YFvs)' (34)

(c) Conservation of fuel vapor mass inside the
cluster. The time change of fuel vapor mass inside the
cluster is due to mass addition from the evaporated
drops, mass addition from fuel transported from the
external gas phase to the cluster and mass depletion
due to fuel escaping from the cluster to the external
gas phase. This is expressed by

dev . .
ds = Nm+ Mg, +MF2J_leoss Yra  (39)
where
a 4 3
mg, = Nj ngFv47tr2dr + (V— 7r3a N)pgﬂYFva
R
(36)

and ., Mg and My, are given, respectively, by
equations (8), (14), (20), and (23) or (26). Now

J‘a poo WFR oJCps J‘R2 yz YFV dy

Yeridr =
R pg F R:Lbn R og(aYFv'*'Y)

37

and using again the approximation of equation (5)
we can approximate mg, by an analytic, non-linear
function F

Mg, = F(RZ; Rh n, ggay egs, YFvs, YFva)' (38)

(d) Conservation of total enthalpy inside the cluster.
The change of total enthalpy inside the cluster is due
to enthalpy being transferred from the external gas
phase to the cluster and enthalpy escaping with the
gaseous outflow from the cluster. In all the cal-
culations made here it was assumed that initially the
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temperature of the external gas phase is much higher
than that of the gases inside the cluster, so that heat
conduction from the gases inside the cluster to the

external gas phase is excluded. Thus the enthalpy
equation is

dH
o= El + EZ,} - lem\hgl

(39)
dr

where i, £, and E, ; are respectively given by equa-
tions (8), (14), (19) and (22) or (25) and

R u

H= NJ 47rihy p, dr+NJ dnrihyp, dr
0 R

/ 4ng®
+ V—”'i”N fgpsa (40)

with
by = K+ Co Ty — Toop) (41)
="+ Co(Ti— Tre) (42)
L=h,—h. (43)
With the above definitions A becomes
He Nodn | & AP
= Npiédn L——n +C, J u,—Jref)r‘clrJ
+4nN L(hG Ter) J F2dr+C,y J}: r’Typ, er
dna’
+ (V -3 N) [A° + Coo(Ty — T )P (44)

The first integral in equation (44) can be easily per-
formed since, as it will be explained in the next section,
Ti(r) is solved as a series solution from the energy
conservation equation inside each drop, and the two
iast integrais in equation (44) are calculated using the
approximation previously described to calculate 6,(y)
from equation (3). Thus, one approximates H by an

analytic, non-linear function

H=x% (Rza R!:ns Bgae Qgsﬁ YFva* Y!—'vs)' (45)

One can eliminate »n as a dependent variable from
the above pmmhnn hv noting that for hahﬂv packed

spheres [7]

n=074 (46)

J
4na’

Thus the dependent variables which are the
unknowns in this problem are: g, Ry, R,, Oy 04 Yiss
Y C, u,, ug. The equations which are solved to find
the solution for these ten variables are given in non-
dimensional form in the Appendix.

J. BELLAN and K. HARSTAD

3. NUMERICAL PROCEDURES

The miegrated drop energy equation is

g (47w1 hyr? dr\ 4nR’ 4, ATI

{
— mh, ‘
dr\ Jo « R I

e R

47

The temperature distribution 7,(r) in the drop is
obtained by solution of the drop heat conduction
equation by means of expansion in a small parameter
inversely proportional to 7, [3]. This results in the
formation of two differential equations in time for

functional narameters. which in coniunction with the
unctional parameters, which in conjunction with the

surface gradient expression (A7) in the Appendix,
determine the temperature distribution; the par-
ticulars are given in ref. [3]. The above equation is
combined with the global energy equation, equation
(39), to obtain an enthalpy equation for the gas phase

d 4
(47ZR0 l)rei)Nh+ V- a /V)pgu()ga

| U — Oy exp (CZ(R,))
= Nm | -= e 2
]—Pxn((‘Z(R \\ [
L o bn
+(p;0g/ Rpgﬂ()gﬂ)u“Ac - Nogn}hkvss (48)

where the function 4 is given by equation (A3).

Since there is a linear relationship between the ¥.’s
and temperature, equations (30), (33) and (39) are
not independent. The following holds

Y;Ov(oga - Hgs) = YF\'SOE'(\ ' YF»;\Ogs - Yl—'w - YI'\u )()g

(49)

Variables and determining equations are as fol-
lows: 0, (or 0)) is obtained from the drop heat con-
duction equation m, from equation (30), & from equa-
tion ( wo;, Y Fvs and Y; Fva from equauons \%7) and (1—&0).
C from equation (AS), R, from equation (A6), u,
from equation (A9), and u, from equation (Al10).
Both m, and A are known functions of the dependent
variables ; m, (or function g) is considered as deter-
mining 0,, and h determines R,. (These functions vary
most strongly with this particular variable selection.)
The variables C, YM,, Yiver R: and 6, are governed
U_y a non-linear set of cugeuraiu cquauOi‘lS, the other
variables are determined directly from differential
equations.

Eliminating Yy, from equations (49) and (AS)
results in an equation relating Y., to C. The evap-
oration equation, equation (A3), also relates these
two variables. These two equations are iterated in
an inner loop for the variables, considering all other

variahlac ivad In an guter loon functions # and A
variaoiCs AL, 1ii an OuWl 100p, 1uliCulns § acl i

are iterated for R, and 6. This nested loop procedure
allows for a relatively efficient solution of the algebraic
equations at each time step of the differential equation
integration. The differential equations are integrated
using a standard ODE integrator, GEAR, with a local
error tolerance of 107*,

The model equations depend on terms proportional
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to dR,/dt. Since R, is formed algebraically, this
derivative needs to be estimated. The procedure for
calculating this derivative is as follows. Define

1-0.74

W=h+ 3 074l

Oga

this is the unknown in equation (48). On the other
hand #’ = R3J, where J is a relatively weak varying
function. Thus

dR, dn’ dJ
PRk N %
R4 (dz det)/J

where dA’/dt is known and dJ/d¢ is approximated by
a third-order backward finite difference.

4. RESULTS AND DISCUSSION

The results presented below were obtained from
calculations performed for liquid »-decane drops
evaporating in initially unvitiated air. The thermo-
physical constants for n-decane that were used here
are the same as those of ref. [3]. The interest here is
on how turbulence can affect evaporation of drops in
clusters and the behavior of the cluster as an entity.

Figure 2 shows a non-dimensional evaporation time
vs the initial air/fuel mass ratio for three situations.
The baseline case is that of the first turbulence model
and u? = 500 cm s~!. The two cases are chosen such
as to study the influence upon evaporation of both
the initial relative velocity and the turbulence history.
The plots show that in the very dense spray regime
the initial relative velocity is not a good control par-
ameter. However, by changing the history of tur-
bulence with respect to that of evaporation, one can
obtain now complete evaporation in situations where
the gases in the cluster saturated before complete
evaporation when the other turbulence model was
used. The reason for this is that as the drops heat up,
the gases cool off; if the exchange of mass and heat
between the cluster and the surroundings is poor, the
gases in the cluster will saturate and the drops will
eventually be at the same temperature as the gases
thereby stopping evaporation. On the other hand if
fresh gases and energy can be brought inside the clus-
ter from the surroundings, evaporation will proceed.
These processes are most important during the initial
part of evaporation, when the rate of mass loss from
the drop is high. If turbulence is not present at that
time, evaporation will eventually stop as shown by
the baseline case; an increase in the initial relative
velocity does not affect the outcome. Since turbulence
model 2 portrays a case where turbulence is present
initially, the exchange of mass and heat between the
gases inside and outside the cluster occurs at the
appropriate time, and evaporation can be completed.

For smaller ¢°, there is a regime where both the
turbulence history and «? can control evaporation. By
increasing #? one can now obtain complete evap-
oration before saturation with the same turbulence
history; by keeping u” constant and changing the
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turbulence history one obtains the same outcome,
however, the evaporation time is now considerably
shorter.

When ¢° increases even further, and the regime of
the slightly rich and further that of the lean mixtures is
encountered, neither turbulence nor the initial relative
velocity are good control parameters. In fact as n°
decreases to a few drops-cm ™3, any one of the three
models gives exactly the same result and all three
models reach the same asymptote. The reason for this
is that as the initial density of drops in the cluster
decreases, the interstitial gas between the drops cools
less during evaporation, and mass and heat transfer
from the surroundings plays a decreasingly important
role. In the same manner, as the initial density of
drops in the cluster decreases, the drops reach the
asymptote corresponding to the limit of the convective
evaporation of 1 drop-cm~2 [2].

These conclusions are substantiated by the results
plotted in Figs. 3-5. Depicted in Fig. 3 are both the
gas temperature drop and the gas density rise as a
function of ¢° For very lean mixtures and dilute
clusters there is no temperature drop since the heat
going to the drops to support evaporation is minimal
compared to the total heat available in the gases of
the cluster. As ¢° decreases and the regime of rich
mixtures is reached, a temperature drop and a cor-
responding density rise are encountered. With a fur-
ther decrease in ¢° one can observe the influence of
turbulent heat transfer from the surroundings in keep-
ing the temperature at a level where it can support
evaporation. In contrast, when turbulence is not pre-
sent initially and instead develops with time the tem-
perature drop is more substantial and eventually
reaches the point where it can no longer support
evaporation.

The reason that the initial history of turbulence is
so important in controlling evaporation is illustrated
in Fig. 4. Not only is m largest when the drops are
larger [2], but also the loss fraction is largest initially.
By the time R, = 0.5, the loss fraction is negligible.
The oscillations in #,,,/m observed in the figure inset
may be due to the inaccurate numerical evaluation of
da/dt using a two step backward scheme. Since these
oscillations occur in a region where |, /1] < 1, no
further effort has been made to improve the accuracy.

The loss fraction accounts only for the mass lost
from the system as a result of the motion of the cluster
surface, but does not account for the gain that occurs
when mass is brought into the cluster by turbulent
transfer from the surroundings. As a result, its value
as a diagnostic is limited to indicating the relative
importance of gaseous mass lost from the cluster to
gaseous mass gained inside the cluster through evap-
oration.- In contrast, the global mass conservation
equation for the cluster does account appropriately
for mass addition due to turbulent transport.

The variation of the final position of the cluster
surface with respect to its initial position is shown vs
¢%in Fig. 5. As expected, for lean mixtures and dilute
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sprays, when there is not much gaseous mass added
through evaporation, the cluster maintains its original
size. As ¢° decreases the cluster shrinks in size due to
internal cooling. However, this shrinkage is smaller
for turbulence model 2, as the final temperature was
also observed to be higher. This contraction is con-
sistent with the observed decrease in pressure inside
the cluster when evaporation occurred in a cluster that
was adiabatically insulated from the surroundings [2].
This pressure drop was larger with decreasing ¢°,
which means that despite the very large increase in
density in the very rich cases, the cooling effect was
dominant.

If the mass lost from the cluster is integrated in
time, converted into a volume by dividing by p;°, and
finally nondimensionalized by the initial volume of

the cluster one finds that at fixed R, this value is larger
for smaller ¢° and at fixed ¢° it is larger for turbulence
model 1. When this value is added, at fixed R,, to the
non-dimensionalized cluster volume, one finds that
for a given ¢° the sum is larger for turbulent model
2. In all cases this sum is consistently smaller than
unity and increases with the value of ¢° approaching
unity for large values of ¢°. These results confirm the
fact that even when one accounts for the mass escap-
ing from the cluster, contraction due to cooling of the
gases occurs. With turbulence model 1 more of the
gas escapes to the surroundings and with turbulence
model 2 less of a contraction occurs.

It is worth mentioning that the differences observed
between the behavior of the clusters when the two
turbulence models are considered is not due to the
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fact that the drops evaporate in different regimes [2}
(diffusive, convective-diffusive or convective) but
rather due to the different exchange processes between
the clusters and their surroundings. Figure 5 illus-
trates the fact that the initial penetration distance,
which indicates the evaporation regime [2], varies only
with u? and ¢° and not with the turbulence model. At
fixed ¢° as R, decreases the penetration ratios con-
tinue to be extremely close for the two turbulence
models.

The effect of varying the cluster size can be seen in
Fig. 6 where a non-dimensional evaporation time is
plotted vs the initial size of the cluster for both tur-
bulence models. For a stoichiometric mixture neither
the initial size of the cluster nor the turbulence model
influence very much the evaporation time ; however,
there is a slight tendency to a larger evaporation time

with increased initial size. This effect is very substantial
for rich mixtures and is observed for both turbulence
models. There are several reasons for this. First, since
u? is fixed, as the cluster becomes smaller, the initial
penetration ratio is larger and the drops evaporate in a
regime which changes from diffusive to predominantly
convective thus reducing the evaporation time. This
is illustrated in Fig. 7 where (L, /R)® is plotted vs R°.
In contrast, for stoichiometric mixtures the evap-
oration regime is convective—diffusive to convective
and as it has been pointed out previously [2], con-
vective effects always dominate diffusive effects thus
determining the evaporation time. Second, although
at fixed ¢°, n° is the same for all sizes of clusters, N
decreases with R°. This leads to a more pronounced
interaction with the surroundings and thus faster
evaporation.
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The total effect upon the final cluster size is pre-
sented in Fig. 7. In all cases larger clusters contract
more, relative to their initial size, than do smaller
clusters due again to the cooling effect discussed
above. A smaller number of drops in a cluster results
in less cooling of the gas phase at complete evap-
oration and faster evaporation.

Similarly to the discussion pertinent to Fig. 2, tur-
bulence model 2 predicts shorter evaporation times
for dense clusters and the same evaporation time for
dilute clusters as does turbulence model 1. The trends
regarding R*/R° are also similar.

T

TURBULENCE
MODEL

03 L 3.0 10.0

FiG. 7. Initial penetration ratio and final position of the
cluster surface vs the initial radius of the cluster:
T;’a = 1000 K, Tgs =350 K, Y. =0, R®=2x107? cm,

ud =500 cms.

In order to gain a better understanding about the
behavior of the cluster we display in Figs. 8 and 9 the
history of R/R°. Since there is a certain uncertainty
about the time taken to evaporate, and since it
depends strongly upon the evaporation model, in
order to partially eliminate this uncertainty, the plots
are made vs R,. Figure 8 represents the situation for a
rich mixture, whereas Fig. 9 represents the situation
for a stoichiometric mixture. The striking feature in
Fig. 8 is the initial drop in R/R° which, as discussed
above, is due to the cooling of the gas phase and
the continual heating of the drops. Foliowing this
decrease in ﬁ/ﬁ °, a minimum in this value is reached,
after which there ensues a recovery. This recovery is
due to the unvitiated (by fuel) hot gas brought in
through turbulent transport from the gas phase sur-
rounding the cluster. As expected, turbulence model
2 offers more possibilities for recovery. As the cluster
is smaller and the number of drops decreases, there is
less of a drop in R/R°, the minimum R/R° occurs
earlier with respect to R, and the final value of R/R°
is closer to unity. Figure 9 shows that in contrast to
the rich mixtures, for stoichiometric mixtures there is
no minimum in ﬁ/ﬁo; the size of the cluster con-
tinuously decreases with R,. However, there is less of
a cluster shrinkage due to the fact that there is less
mass in the cluster, less cooling and less mass loss.

The practical implications of these results with
regard to optimization of evaporation is straight-
forward. Turbulence should be induced in the gas in
which the spray is injected prior to or at the same time
as injection. Turbulence can help to evaporate the
drops of the spray through two processes. First it
can break the spray into clusters and the smaller the
cluster, the shorter the evaporation time. Second, it
brings in unvitiated (by fuel) hot gas from the sur-
rounding of the clusters thereby enhancing and sup-
porting evaporation. Moreover, the results show that
evaporation of drops in dense clusters can be con-
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trolled whereas when they are in a dilute configuration
it cannot. This means that evaporation control should
be envisaged near the injector in order to be truly
effective, rather than further along the combustor.

5. SUMMARY AND CONCLUSIONS

The model presented above is one example of
subgrid models that are needed to describe spray evap-
oration and combustion. As such, the predictions of
the model pertain to the global behavior of clusters
of drops rather than the detail of the behavior of each
drop in the cluster and the difference in behavior
between the drops belonging to the same cluster.

Despite the simplicity of the turbulence models used
herein there are many important aspects that have
been elucidated by the results obtained with the two
models. First, in contrast to dilute clusters of drops,
the evaporation of very dense clusters of drops is
greatly affected by the initial level of turbulence in the
surrounding gas. Not only is the evaporation time
affected but also it is shown that by having turbulence
initially present rather than letting it build with time,
one can obtain complete evaporation before satu-
ration in situations where otherwise saturation was
obtained before complete evaporation. Thus, for
dense sprays the transfer processes between the gases
in the cluster and the surroundings are crucial in deter-
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mining the outcome of evaporation. Between these
regimes of very dense and dilute clusters there exists
a regime where both the history of turbulence and the
initial relative velocity between drops and gases can
be important control parameters.

Furthermore, the results show that the evaporation
time of a dilute cluster cannot be decreased by reduc-
ing its initial size while keeping the initial air/fuel
mass ratio constant. In contrast, for dense clusters, the
evaporation time decreases with the initial size of the
cluster at the same initial air/fuel mass ratio. More-
over, by having turbulence present initially, rather
than letting it build up, the evaporation time of
the cluster can be further decreased.

Thus gas phase turbulence can be important in
reducing the evaporation time in two ways. First,
turbulence breaks up the spray in small size clusters
right at the exit of the atomizer, where the spray is
dense. Second, turbulence acts as a vehicle for trans-
porting mass, species and heat to the cluster, thus
supporting evaporation. The above results have
shown that turbulence is a strong control parameter
for dense clusters but it is not a control parameter for
dilute clusters. This means that in order to influence
evaporation in sprays one should install turbulence
enhancement devices right at the exit of the atomizer
where the spray is dense and not further down the
length of the combustor where the spray has become
dilute. Indeed it is well known empirically that this
is true and the present results provide a theoretical
justification for a well-known fact. However, it would
be very desirable to have a set of experiments to com-
pare with the predictions of the present theory. The
present conclusions show that most of the sensitivity
of our model and thus most of the control in an
experiment can be expected in the dense-cluster
regime. This makes a comparison so much more
difficult because it is precisely in this regime that
experiments are most difficult to perform becausc of
the lack of resolution.
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APPENDIX

As explained in Section 3 6, is obtained as a function of z
from the conduction equation. The ten equations that are
solved for the ten dependent variables identified at the end
of Section 2 are as shown below. Define
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where the integrations are performed using 6, and Y, as
given by the approximation of equation (5).
The equations solved are as follows :
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EFFETS DE LA TURBULENCE PENDANT L’EVAPORATION DE GOUTTES DANS
DES GRAPPES

Résumé—On présente un modéle d’évaporation de gouttelette dans des grappes et les mécanismes d’échange
entre la grappe et la phase gazeuse environnante. Ce modéle est développé pour utiliser un modéle de sous-
échelle dans les calculs d’évaporation et de combustion d’aérosols et pour décrire le comportement global
de la grappe, la pression du gaz demeure constante pendant I'évaporation et par suite le volume de la
grappe et la densité du nombre de gouttes varient. On considére deux modéles de turbulence ; le premier
décrit I’évaporation dans I'environnement initialement sans turbulence laquelle se constitue au cours du
temps ; le second modele décrit ’évaporation dans I’environnement lorsque la turbulence existe initialement.
Les résultats obtenus montrent que la turbulence augmente 1’évaporation et qu’elle est un facteur de
commande de ’évaporation des grappes trés denses. Lorsque le rapport initial des masses air/combustible
augmente, a la fois I'histoire de la turbulence et la vitesse relative initiale entre gouttes et gaz peuvent
contrdler I'évaporation. On montre que le temps d’évaporation diminue avec un accroissement initial des
niveaux de turbulence ou de la vitesse relative. Lorsque le rapport initial des masses air/combustible
deux paramétres ne peut contrdler 'évaporation. Le temps d’évaporation décroit avec la diminution de la
taille de la grappe pour des grappes de gouttes denses, tandis que la taille de la grappe n’est pas un facteur
limitant pour les grappes diluées. On discute des implications pratiques de ces résultats.



1668

J. BELLAN and K. HARSTAD

EINFLUSS DER TURBULENZ AUF DIE VERDAMPFUNG VON TROPFEN IN
SCHWARMEN

Zusammenfassung—Ein Modell fiir die Tropfenverdampfung in Schwirmen und fiir die Austauschprozesse
zwischen dem Schwarm und der umgebenden Gasphase wird vorgestelit. Dieses Modell wurde zur Be-
rechnung der Sprithverdampfung und der Verbrennung entwickelt und beschreibt nur globale Ver-
haltensmerkmale von Tropfenschwidrmen. Der Gasdruck im Tropfenschwarm bleibt wihrend der Ver-
dampfung konstant, als Folge davon variiert das Volumen des Tropfenschwarms und die Tropfenanzahl
pro Volumeneinheit. Zwei Turbulenzmodelle werden herangezogen. Das erste Modell beschreibt die
Verdampfung von Tropfenschwirmen in einer Umgebung, die anfinglich turbulenzfrei ist ; die Turbulenz
baut sich erst mit der Zeit auf. Das zweite Modell beschreibt die Verdampfung von Tropfenschwirmen in
einer Umgebung, in der von Anfang an Turbulenz vorliegt. Die mit diesen Modellen erhaltenen Ergebnisse
zeigen, daB Turbulenz die Verdampfung begiinstigt und ein kontrollierender Parameter bei der Ver-
dampfung von sehr dichten Tropfenschwirmen ist. Beispicle werden gezeigt, in denen mit dem ersten
Turbulenzmodell Sittigung vor der vollstdndigen Verdampfung erhalten wurde, wogegen sich mit dem
zweiten Turbulenzmodell das Gegenteil ergab. Steigt das Anfangs-Massenverhilitnis Luft/Brennstoff, so
kann sowohl die Vorgeschichte der Turbulenz als auch die Anfangs-Relativgeschwindigkeit zwischen
Tropfen und Gas die Verdampfung beeinflussen. Es wird gezeigt, daB die Verdampfungszeit mit einer
ErhShung des Turbulenzgrades oder der Anfangs-Relativgeschwindigkeit abnimmt. Steigt das Anfangs-
Massenverhiltnis Luft/Brennstoff weiter und fillt die Tropfenanzahl pro Volumeneinheit zu Beginn in den
Bereich fiir lockere Schwirme, so beeinflult keiner der beiden obengenannten Parameter die Verdampfung.
Bei dichten Tropfenschwirmen verkiirzt sich die Verdampfungszeit mit abnehmender GroBe des
Schwarms; bei lockeren Schwirmen hat die GréBe keinen EinfluB. Die praktischen Folgerungen aus
den Ergebnissen werden diskutiert.

O®PEKTHI TYPBYJIEHTHOCTH IMTPU UCTIAPEHWUH KJIACTEPOB KATIEJIb

Asnoramms—IIpencrasieHa MOIeNb HCNAPSHHUA KJIACTEPOB Kallelb i OMHCAHBI POLECCH 0OMeHa MeXIy
KJacTepaMK U Hecymuei ra3osoii cpenoit. PazpaGorannas Moenb, SBIAACH IOACETOYHOM, HCMOIL3YETCS
[UIsl pacyeTa MCIAPEeHUs W TOPEHHUs PACTIBUIOB Kaflelb, a MI03TOMY YYHTHIBAET TOJIBLKO [I0GaIbHbE 0CO-
GeHHOCTH TIOBeneHUs Hcmapsoluxca kiactepos. Ilpeanonaraercs, 4To B Nponecce UCNAPeHUs AaBile-
HME Ta3a B KJacTepe OCTAeTCH NOCTOAHHBIM, TaK YTO MEPEMEHHBIMH ABISIOTCS OOBeM Kiacrepa W
TUIOTHOCTDb YMCJIA Kaleb B HeM. PaccMoTpens! iBe Mogenu TypOyieRTHocTH. TlepBast omuchiBaeT ucma-
peHMe KiacTepa B Cpede, B KOTOpOil BHadale TypGyNeHTHOCTB OTCYTCTBYET, HO “HNOIK/IIOYAeTCH” cO
BpPEMEHEM IO Mepe HCrapeHMs KiactepoB. BTopas mMonens omMceIBaeT HCHApeHme KJIacTepa B cpede ¢
HayanbHO# TypOyneHTHOCTBIO. CornacHo oGeMM MogenaM TypOyNeHTHOCTh YCKOPS€T HCTapeHHe,
SBIASCH ONpeAeIAroIMM (GakTopoOM Npu HCHapEeHHHB O¥eHb TLIOTHBIX KiIacTepoB. TIpHBeNeHsl NpHMEpEL,
B KOTOPBIX [IOKa3aHO, 4TO C HCIIOIb3OBAHMEM IEpPBO MO/IeNH HAChIIEHHe HACTYMAET A0 MOJHOTO Ucha-
peHus Kaflesb, a C HCNIONL30BAHHEM BTOpoif HabuonaeTcs nporusonodoxnsit abdexr. Ilpu ypesnuye-
HHH HAYaNBHOrO MACCOBOTO OTHOLUEHWS BO3YX/TOPIOYEE MCHAPeHHE 3aBHCHT KaK OT NPENLICTOPHU
TYPOYJIEHTHOCTH, TAK ¥ OT HAYAJIBHOM OTHOCHTEILHOM CKOPOCTH IBMXXEHHA Kanelib M rasa. [TokasaHo,
YTO BPeMs HCHIAPEHHs YMEHBIIACTCS, €CIM HavaibHBIH ypOBeHb TYPOYJIEHTHOCTH MIIH OTHOCHTENbHAs
CKOpOCTb BO3pacTaroT. [IpH CYIIECTBEHHOM YBEIMYEHHA HAYAJILHOTO MACCOBOTO OTHOIUEHMS BO3XYX/
TOIJIABO M YMEHRLILEHUH HAYajihHOMH IUIOTHOCTM YKCIa Kamejb JO Pa3speXEHHOro PeXuMa HH OJWH M3
BLIICYKA3aHHbIX MAPAMETPOB HE OKa3hlBACT PELIAIOLIEro BIAWSHUA Ha ucnapeuse. Kpome Toro moka-
3aHO, 4TO BPEMsl MCTIADEHMS] YMEHBIIACTCA C YMEHbIICHUEM pa3Mepa KiIacTepa npH GoNbilo# MI0THOCTH
qHCNa Kamlledb, 4 TIPH Majioll IIOTHOCTH pasMep KJacTepa He sBJIMETCA ompelesimoumyM (HakTopom.
O6cyxaaroTcs IPaKTHYECKHE ACTIEKThE MOJIYYEHHBIX PE3YILTATOB.



