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Abstract-A model of droplet evaporation in clusters and the exchange processes between the cluster and 
the gas phase surrounding it are presented. This model is developed for use as a subscale model in 
calculations of spray evaporation and combustion and thus describes only global features of cluster 
behavior. The gas pressure in the cluster remains constant during evaporation and as a result the volume 
of the cluster and the drop number density inside the cluster vary. Two turbulence models are considered. 
The first one describes cluster evaporation in surroundings initially devoid of turbulence and turbulence 
is allowed to build up with time. The second model describes cluster evaporation in surroundings where 
turbulence is present initially. The results obtained with these models show that turbulence enhances 
evaporation and is a controlling factor in the evaporation of very dense clusters; examples are shown 
where with the first turbulence model saturation was obtained before complete evaporation whereas the 
opposite was obtained with the second turbulence model. As the initial air/fuel mass ratio increases, both 
turbulence history and the initial relative velocity between drops and gases can control evaporation. It is 
shown that the evaporation time decreases with an initial increase in turbulence levels or relative velocity. 
When the initial air/fuel mass ratio increases further and the initial drop number density falls within the 
dilute regime, neither of the above parameters can control evaporation. Moreover, the evaporation time 
decreases with the decreasing size of the cluster for dense clusters of drops, whereas for dilute clusters of 

drops the size is not a controlling factor. The practical implications of these results are discussed. 

1. INTRODUCTION 

THE MATHEMATICAL formulation of spray combustion 
is extremely complicated due not only to the great 
number of phenomena to be described but also due 
to the fact that the space scales involved in these 
phenomena are vastly different. For example, a few 
of the most obvious scales are : the scale of the com- 
bustor itself, the many turbulent scales associated with 
turbulence build up and decay, the scale of droplet 
interactions and the scale of the drops themselves. 
These scales vary by many orders of magnitude from 
the largest one to the smallest one and thus it is obvi- 
ous that an accurate mathematical description at all 
scales is impractical. Instead, a sound approach is to 
describe in detail the macroscale where many of the 
phenomena of interest to engineers involved in the 
design of combustors occur, and to associate and 
couple to this description that of phenomena occur- 
ring at scales much smaller than those of immediate 
interest. This second part of the formulation is called 
a subscale or subgrid model because the phenomena 
to be described occur at a scale much smaller than 
that of the grid size used to computationally solve the 
macroscale problem. By the very nature of this two- 
level formulation, the subscale models are more 
approximate than the macroscale models and lack the 
detail that the latter one must have in order to be 
useful. 

The work described here pertains to a subscale 
model to be used for the description of spray evap- 
oration in a combustor. Within the frame of this 
approximation it is intended that the gas phase in 
the combustor be described by the solution of the 

macroscale equations at certain grid points; this is an 
Eulerian approach. In contrast, the spray is par- 
titioned into clusters of drops that have a size smaller 
than that of the grid, and each cluster is followed in 
its trajectory; this is a Lagrangian approach. The 
coupling between the two formulations is achieved 
through the transfer of mass, species and heat to and 
from the cluster. The partition of the spray into clus- 
ters as explained above is not an artifact because it is 
corroborated by experimental evidence [ 11. 

What is described below is only the subgrid model 
uncoupled from the macroscale formulation. This 
means that the properties of the gas phase sur- 
rounding the cluster of drops are assumed known, and 
what is of interest to describe, solve for and analyze 
is the behavior of a cluster of drops in this given 
environment. 

2. MODEL FORMULATION 

Figure 1 shows the situation under consideration. 
A monodisperse collection of uniformly distributed 
droplets of a single-component volatile compound 
is immersed into gases at a higher temperature and 
exposed to a convective flow. As a result, heating of 
the drops and evaporation occurs. At each instant of 
time the envelope of the cluster of particles is called 
the surface of the cluster. The volume enclosed by the 
surface is called the cluster volume ; it contains both 
drops and gas. Since the pressure is maintained con- 
stant during this process, the volume of the cluster 
will change with time. 

The point of departure of the present model is the 
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transverse area of the cluster [cm’] 
cross-sectional area of a drop [cm’] 
radius of the sphere of influence [cm] 
-ti/[47r(p,D)“R”] 
specific heat at constant pressure 
[calgg Km ‘1 
fitted C,, - C,,, for the saturation pressure 
curve [calg-’ Km’] 
constant 
diffusivity [cm’s_‘] 
rate of enthalpy transfer, equation (19) 
rates of enthalpy transfer for turbulence 
models 1 and 2 (j = 1 and 2), 
equations (22) and (25) 
enthalpy [call 
4R “Ip,” L,, 

HI&, 
specific enthalpy [cal g ‘1 
enthalpy of the gases at Trer [cal g- ‘1 
enthalpy of the liquid at Tref [cal g- ‘1 
latent heat of evaporation [cal g- ‘1 
Lewis number 
turbulent length scale [cm] 
rate of mass transfer, equation (21) 
rate of species i transfer, equation (20) 
rate of species i transfer for turbulent 
models 1 and 2 (j = 1 and 2), 
equations (23) and (26) 
evaporation rate, -(l/N) dm,/dt [gs-‘1 
mass of all drops in the cluster [g] 
mass of fuel vapor [g] 
mass of gases inside the cluster [g] 
4np,” R O3 

mlm,d 
total number of drops 
drop number density [cm-‘] 
Nusselt number 
pressure [atm] 
Prandtl number 
2Ru, iv: 

2~~,(~,/~~)/~1”‘~~/~~’ 
universal gas constant 
[atm cm3 mol-’ K.-l] 
universal gas constant [cal mol-’ K-‘1 
radius of the cluster [cm] 
k/R0 
R/R” 
drop radius [cm] 
temperature [K] 
R”‘/D” 

Lb” I cp, 

t 
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time [s] 
radial coordinate centered at a drop’s 
center [cm] 
radial coordinate centered at the cluster’s 
center [cm] 
a/R0 
Sherwood number 
velocity [cm ss’] 
volume of the cluster [cm’] 
radial gas velocity inside the sphere of 

13) 

influence [cm s- ’ ] 
‘trapping factor’, equation ( 
molecular weight [g mol ‘1 

r/R’ 

r/R. 

Greek symbols 
constant for the Langmuir-Knudsen 
evaporation law, 4n 

WI&,, 
generic function representing Q or Y, 
evaporation efficiency, equation (29) 

C,,TIL,, 
conductivity [cal cm _ ’ s ’ K ‘1 
viscosity [g cm-’ s-‘1 
kinematic viscosity, ,LL/P [cm” s- 
density [gcme3] 

PlPref 
P~wFC~~I(RZL~) 

1-y 

t/&r. 

Subscripts 
a 

:“, 
C 

ch 
d 
Fv 

k 
r 
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at the edge of the sphere of influence 
ambient gas 
normal boiling point 
cluster 
characteristic value 
drop 
fuel vapor 

gas 
liquid 
relative 
drop surface. 

Superscripts 

0” 
in the far field of the external gas phase 
initial value 

f final : either when R, = 0.04 or when 
evaporation stopped. 
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FIG. 1. Sketch of the physical situation modeled. 

model of convective drop evaporation given by ref. 
[2]. In that model the cluster of drops was adia- 
batically insulated from the surroundings and the 
drops were moving together as a rigid entity through 
the flow. As a result, the gas pressure inside the cluster 
varied during evaporation. In contrast, in the present 
model there is mass and energy exchange across the 
surface of the cluster and drops move with respect to 
each other. If they move away from each other, then 
expansion occurs ; if they move towards each other 
than contraction occurs. Thus, in this new conflgur- 
ation the drop number density becomes a dependent 
variable whereas the pressure becomes a constant. 

The main assumptions regarding the liquid and gas 
phases have been described in detail elsewhere [3] and 
thus will not be discussed here. Similar to the study 
of ref. f3], in the present study each drop is considered 
surrounded by a sphere of influence the radius, a, of 
which is the half distance between the centers of two 
adjacent drops. The ensemble of these spheres of 
inguence and the space between them constitutes the 
cluster volume. However, whereas in ref. [Z] the value 
of the radius of the sphere of influence was a constant, 
here it is a variable with time. Moreover, following a 
previous study [2], the present formulation has three 
components : (a) the description of mass, species and 
enthalpy conservation inside the sphere of inlhtence 
of each droplet ; (b) the description of mass, species 
and enthalpy conservation in the cluster volume ; and 
(c) the description of convective effects using differ- 
ential equations expressing momentum conservation 
for the gases and the drops. The present description of 
convective effects is unchanged from ref. [2]. However, 
since the assumption of constant gas density inside 
each sphere of influence [3] is no longer valid, the 
solution of the convective diffusive equations inside 
each sphere of influence changes from its simple 
expression [4] to 

where C, and C2 are integration constants. Now since 
Leg = 1, pp = p/Pr and using the classical expression 

p = ‘f&iJI~5 (2) 

with the assumption Pr = 0.8 one obtains the fol- 
lowing solution for Og : 

where Cl0 and Cze are functions of B,, and 13,~. Since 
following the SchvabZeldovich approach Yi is a 
linear function of 8, once tI is known so are the 
various Yis in terms of y , Yi::, and Yz,. 

The derivation of equations (l)-(3) is the only 
novelty here in the treatment of the conservation laws 
inside the sphere of influence when compared with the 
formulation of ref. [2]. Both boundary conditions and 
evaporation law at the surface of the drops are the 
same as in ref. [2]. Moreover, the energy conservation 
for the liquid drops is also the same as in ref. [2] 
in that it considers the liquid temperature as being 
transient and a function of the radial position. 

Note that the right-hand side of equation (3) is 
not analytically integrable and 8(y) can no longer be 
simply expressed as a function of y as in ref. [4]. This 
is due to the relaxation of the assumption that p8D is 
a constant. With this new fo~ulation the equations 
must be solved numerically, unless some approxi- 
mation is made in order to evaluate 

A convenient way to evaluate Z(y) is to use the weak 
evaporation, constant viscosity limit solution 

ok = 0, +ezRl/y (9 

and to perform the integration analytically. This 
approximation preserves both the concavity of the 
actual temperature and its boundary values at r = R , 
and Rz and therefore is expected to fit well within the 
present model which takes a qualitative approach to 
modeling rather than a quantitative approach. This 
approximation is also used elsewhere [5]. The quali- 
tative approach used here is specifically concerned 
with global effects and does not attempt to describe 
accurately spatial dependence of the dependent vari- 
ables. Moreover, the present formulation is quali- 
tatively accurate only when the total number of drops, 
N, is much larger than unity. 

To complete the description of this fo~ulation, 
the following is discussed below : (I) transfer of mass, 
species and enthalpy from the cluster to the external 
gas phase; (2) the behavior of the external gas phase 
and transport of mass, species and enthalpy to the 
cluster; and (3) the conservation equations for the 
entire cluster. 

HHT 31:8-H 
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(1) Transfer from the cluster to the external gas evaporation, strictly steady, limit W J 0 because 
phase mp << md. 

The challenge here is to describe in a simple way 
the mass, species and energy transfer from a cluster 
with a moving boundary using a model that does 
not discriminate between the various drops and 
their associated surrounding gas phase in the ?- 
direction (although nonuniformities in r are taken 
into account). 

The global unsteady continuity equation inside the 
sphere of influence yields 

Since in this model there is no distinction between 

the surface of the cluster and surface of the spheres of 
influence the mass and enthalpy loss from the cluster 

are respectively Nti,,,, and Nti,,,&,. The effect of the 
convective flow on drop evaporation is contained in 
ti which is the solution of the purely diffusive evap- 
oration case multiplied by a corrective factor as 
described in ref. [2]. 

(2) The behavior of’ the gas phase e.xternal to the 

cluster und transport to the cluster $[,rclp/dr] = 47cR’(p,v),-4nR’$P,, 

-4na’(p,o),+4na’~~~~. (6) 

Since (dR/dt] << I(v),] 

G[4alp,r2dr] = ti-til,,, (7) 

where 

Two physical limits can occur. 

(a) The strictly steady situation where 

4nR’(p,v), = 4na’(p,u), 

and according to equation (8) one obtains 

da 
ti,,,, = ni - 4na2 - p ,. 

dt ‘* 
(10) 

In this limit maximum new vapor passes through the 
sphere of influence and escapes to ambient. Then 

(v), = &. 
B” 

(b) The limit where all new vapor is trapped into 
the sphere of influence as its surface moves. Then 

and 

ni,,,, = 0 (11) 

(u), = $- (12) 

The physical reality is somewhat in between these two 
limits. We thus define a ‘trapping factor’ 

W = m,l(m,+m,) (13) 

and model 

(u)a = (I- WI& + wg. (14) 
P 

Thus this expression gives the velocity of the gases at 
the edge of the sphere of influence in the general case 
and also satisfies the above two limits because : (i) in 
the dilute limit md << mg and W -+ 1 ; (ii) in the strong 

In order to be consistent with the treatment of con- 

vective drop evaporation of ref. [2]. which is still pre- 
served here, where convective effects are considered 
as a correction to diffusive evaporation, the external 
gas phase is first considered to have a purely diffusive 
behavior and Y, and 0 satisfy 

The solution of this equation is 

w = (I-,-r“-);+ I-’ (16) 

assuming continuity for I at ? = RI. Thus 

Similarly to the description of convective effects of 
ref. [2], these are seen as a contribution both from the 
individual droplet and the entire cluster. 

The contribution to heat transfer from the indi- 

vidual drops is due to the cluster ‘porosity’. Consistent 
with the present homogeneous description for the 
cluster in the f-direction this contribution for heat, 
species and mass is modeled as 

The heat transfer to the entire cluster is highly 

dependent upon turbulent transfer between the sur- 
roundings and the cluster. Because of this, it is very 
important to understand how the history of tur- 
bulence with respect to that of evaporation inlluences 
the behavior of the cluster. For this reason, two tur- 
bulence models are considered and compared here. 
Since in our calculations the coordinate system is fixed 
with the state of the gases at t = 0, u,” = 0 and thus in 
the first model the drops do not act initially as an 
entity, but rather as individuals and turbulence builds 
up with time if the cluster ‘porosity’ diminishes sig- 
nificantly. In this model the rate of heat and species 
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transfer integrated over 
cluster is 

the entire surface of the 

MI*, , = 47r(p,D)“Sh, z R( YY - Yjyi,). (23) 

Under the assumption of similarity between heat and 
mass transfer S/Z, = Nu,. In the computations further 
presented here the value of Nu, was taken to be that 
for flows around a sphere up through the turbulent 
range [6] 

Nu, = I +0.19Pr”3 Re,‘/’ (24) 

where Re, is based upon the length scale [Ac(~g/~J/~]o.s 
and velocity ud [2]. The quantity AJu&,) is an 
effective cluster area which was found to be im- 
portant in determining the drag due to the surface 
force on the cluster as a result of its motion through 
the gas [2]. The ratio u,/ud is in fact equal to the non- 
slip displacement gas flow divided by the total gas 
hi. 

The second turbulence model used here is different 
from the first one in that the turbulent part of the 
Nusselt number is changed in such a manner as to be 
consistent with the cluster surroundings being initially 
turbulent. This is done by making the turbulent con- 
tribution of Nu, proportional to ud rather than ug. In 
this second formulation 

E2,, = 4azL,, 
CP8 

t+:PrRe, R”(Op--qBga) 
> 

(25) 

Miz.2 = 47QD)” ZfqPrRe, R”(Yp”-Yiyi,) 
> 

(26) 

where 

L% = 2~~~2~~ 1~2 (27) 

c, Z 1=/l? (28) 

and C, is a constant. 

(3) The conservation equations for the entire cluster 
Under the quasi-steady assumption these equations 

are as follows. 

(a) Conservation of total mass of liquid fuel. This 
states that the mass of liquid fuel at time t is equal to 
the initial fuel mass minus the mass evaporated from 
the drops. Once nondimensionalized the equation 
becomes 

E= I-R:. (29) 

(b) Conservation of total gaseous mass inside the 
cluster. The gaseous mass at time t is the sum of the 
initial gas mass, the mass evaporated from the fuel, 
and the mass entering the cluster of drops minus the 

mass loss from the cluster to the surroundings. This 
is expressed as 

dm 
-A - Nm-Nm,,,,+(p,--;)#,A, 
dt 

(30) 

where 

m8 = N + (v- yN)p, (31) 

and mloss is given by equations (8) and (14). To cal- 
culate the density integral, the equation of state is 
invoked to obtain 

PrnWFC,, R03 s R2 p,Jr)r2 dr = ___ y2dy 
R,*Lb, R, f$(~yFv +Y) 

(32) 

where 

YF” + Y,, = 1 (33) 

was used. The form of equation (31) becomes 
integrable when Bs is given by the approximation of 
equation (5) and YFV is obtained in a similar way. 
In this manner m, can be approximated by an ana- 
lytic, non-linear function G 

mg = G(R,, R,, II, e,, egs, YF,,, YF,,). (34) 

(c) Conservation of fuel vapor mass inside the 
cluster. The time change of fuel vapor mass inside the 
cluster is due to mass addition from the evaporated 
drops, mass addition from fuel transported from the 
external gas phase to the cluster and mass depletion 
due to fuel escaping from the cluster to the external 
gas phase. This is expressed by 

hF” 
- = Nti + &, + MFzj - Nni,oss Y,,, 

dt (35) 

where 

mFV =Nlp,Y,4nr’dr+ (V-TN)p,Y,. 

(36) 

and m,,,,, MFI and MF2J are given, respectively, by 
equations (8) (14), (20), and (23) or (26). Now 

pp YFyr2 dr = 
p”w,R”C,, R2 y2YFVdy 

XL,, s RI eg(ayFv+Y) 
(37) 

and using again the approximation of equation (5) 
we can approximate m,, by an analytic, non-linear 
function F 

m F” - - F(Rz,RI,n,g,,,t&, Y~vsr Y,,,). (38) 

(d) Conservation of total enthalpy inside the cluster. 
The change of total enthalpy inside the cluster is due 
to enthalpy being transferred from the external gas 
phase to the cluster and enthalpy escaping with the 
gaseous outflow from the cluster. In all the cal- 
culations made here it was assumed that initially the 
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temperature of the external gas phase is much higher 
than that of the gases inside the cluster, so that heat 
conduction from the gases inside the cluster to the 
external gas phase is excluded. Thus the enthalpy 
equation is 

dH 
~~ = E, + EL, - N%,&, dr 

where ti,,,,, E, and E,,, are respectively given by equa- 
tions (8), (14), (19) and (22) or (25) and 

0 
H = N 

s 
R 4rcr2h,p, dv+ N 

0 s 
4&h,p, dr 

R 

+ (“-4yfN)h,pg, (40) 

with 

h, = h” + C,,,(T, - T,cr) 

h, =hL+Cp,(T,-Trrf) 

L = h, -h,. 

With the above definitions H becomes 

(41) 

(42) 

(43) 

H= Np14n[$hL+CP,[(T,-T..,)r’dr] 

+4nN (hG-C,,,T,,) 
s 

” pgr2 dr+C 
R 

,,lliT,p,dr] 

The first integral in equation (44) can be easily per- 

formed since, as it will be explained in the next section, 
T,(r) is solved as a series solution from the energy 
conservation equation inside each drop, and the two 
last integrals in equation (44) are calculated using the 
approximation previously described to calculate B,(y) 
from equation (3). Thus, one approximates H by an 
analytic, non-linear function 

H= -X(R,,R,,n,&,,@,,, Yr,,, Ypvs). (45) 

One can eliminate n as a dependent variable from 
the above equation by noting that for tightly packed 
spheres [7] 

12 = 0.74&. (46) 

Thus the dependent variables which are the 
unknowns in this problem are : E, R ,, R2, Ogs, Oga, Y,,,, 
Y mar C, u,, ud. The equations which are solved to find 
the solution for these ten variables are given in non- 
dimensional form in the Appendix. 

3. NUMERICAL PROCEDURES 

The integrated drop energy equation is 

(471 

The temperature distribution T,(r) in the drop is 

obtained by solution of the drop heat conduction 
equation by means of expansion in a small parameter 
inversely proportional to i., [3]. This results in the 
formation of two differential equations in time for 
functional parameters, which in conjunction with the 
surface gradient expression (A7) in the Appendix. 
determine the temperature distribution ; the par- 
ticulars are given in ref. [3]. The above equation is 
combined with the global energy equation, equation 
(39). to obtain an enthalpy equation for the gas phase 

+(P; 0; -P&& )u, A, -- .~O,,,&,,, (48) 

where the function h is given by equation (A3). 
Since there is a linear relationship between the Yj‘s 

and temperature, equations (30), (35) and (39) are 
not independent. The following holds 

(49) 

Variables and determining equations are as fol- 
lows : O,, (or O,,) is obtained from the drop heat con- 
duction equation, mg from equation (30), h from equa- 
tion (48), Y,,, and Y,,, from equations (49) and (A8). 
C from equation (A5), R, from equation (A6), u,, 
from equation (A9), and U, from equation (AIO). 
Both mg and h are known functions of the dependent 
variables; m, (or function g) is considered as deter- 
mining Bps and h determines RZ. (These functions vary 
most strongly with this particular variable selection.) 
The variables C, Ybv,, Ytv_ R2 and ngr are governed 
by a non-linear set of algebraic equations; the other 
variables are determined directly from differential 

equations. 
Eliminating YFva from equations (49) and (A8) 

results in an equation relating Y,,, to C. The evap- 
oration equation, equation (A5). also relates these 
two variables. These two equations are iterated in 
an inner loop for the variables, considering all other 
variables fixed. In an outer loop, functions g and in 
are iterated for R2 and O,,. This nested loop procedure 
allows for a relatively efficient solution of the algebraic 
equations at each time step of the differential equation 
integration. The differential equations are integrated 
using a standard ODE integrator, GEAR, with a local 
error tolerance of 10m4. 

The model equations depend on terms proportional 
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to dR,/dt. Since R2 is formed algebraically, this turbulence history one obtains the same outcome, 

derivative needs to be estimated. The procedure for however, the evaporation time is now considerably 

calculating this derivative is as follows. Define shorter. 

l-0.74 
h’Eh+f” 3 x 0.74 PdL ; 

this is the unknown in equation (48). On the other 
hand h’ = R:J, where J is a relatively weak varying 
function. Thus 

When c$” increases even further, and the regime of 
the slightly rich and further that of the lean mixtures is 
encountered, neither turbulence nor the initial relative 
velocity are good control parameters. In fact as no 
decreases to a few drops-cm- 3, any one of the three 
models gives exactly the same result and all three 
models reach the same asymptote. The reason for this 
is that as the initial density of drops in the cluster 
decreases, the interstitial gas between the drops cools 
less during evaporation, and mass and heat transfer 
from the surroundings plays a decreasingly important 
role. In the same manner, as the initial density of 
drops in the cluster decreases, the drops reach the 
asymptote corresponding to the limit of the convective 
evaporation of 1 drop-cm- 3 [2]. 

where dh’ldt is known and d J/dt is approximated by 
a third-order backward finite difference. 

4. RESULTS AND DISCUSSION 

The results presented below were obtained from 
calculations performed for liquid n-decane drops 
evaporating in initially unvitiated air. The thermo- 
physical constants for n-decane that were used here 
are the same as those of ref. [3]. The interest here is 
on how turbulence can affect evaporation of drops in 
clusters and the behavior of the cluster as an entity. 

Figure 2 shows a non-dimensional evaporation time 
vs the initial air/fuel mass ratio for three situations. 
The baseline case is that of the first turbulence model 
and up = 500 cm s-i. The two cases are chosen such 
as to study the influence upon evaporation of both 
the initial relative velocity and the turbulence history. 
The plots show that in the very dense spray regime 
the initial relative velocity is not a good control par- 
ameter. However, by changing the history of tur- 
bulence with respect to that of evaporation, one can 
obtain now complete evaporation in situations where 
the gases in the cluster saturated before complete 
evaporation when the other turbulence model was 
used. The reason for this is that as the drops heat up, 
the gases cool off; if the exchange of mass and heat 
between the cluster and the surroundings is poor, the 
gases in the cluster will saturate and the drops will 
eventually be at the same temperature as the gases 
thereby stopping evaporation. On the other hand if 
fresh gases and energy can be brought inside the clus- 
ter from the surroundings, evaporation will proceed. 
These processes are most important during the initial 
part of evaporation, when the rate of mass loss from 
the drop is high. If turbulence is not present at that 
time, evaporation will eventually stop as shown by 
the baseline case ; an increase in the initial relative 
velocity does not affect the outcome. Since turbulence 
model 2 portrays a case where turbulence is present 
initially, the exchange of mass and heat between the 
gases inside and outside the cluster occurs at the 
appropriate time, and evaporation can be completed. 

For smaller +“, there is a regime where both the 
turbulence history and ue can control evaporation. By 
increasing up one can now obtain complete evap- 
oration before saturation with the same turbulence 
history; by keeping up constant and changing the 

These conclusions are substantiated by the results 
plotted in Figs. 3-5. Depicted in Fig. 3 are both the 
gas temperature drop and the gas density rise as a 
function of 4”. For very lean mixtures and dilute 
clusters there is no temperature drop since the heat 
going to the drops to support evaporation is minimal 
compared to the total heat available in the gases of 
the cluster. As 4’ decreases and the regime of rich 
mixtures is reached, a temperature drop and a cor- 
responding density rise are encountered. With a fur- 
ther decrease in 4” one can observe the influence of 
turbulent heat transfer from the surroundings in keep- 
ing the temperature at a level where it can support 
evaporation. In contrast, when turbulence is not pre- 
sent initially and instead develops with time the tem- 
perature drop is more substantial and eventually 
reaches the point where it can no longer support 
evaporation. 

The reason that the initial history of turbulence is 
so important in controlling evaporation is illustrated 
in Fig. 4. Not only is riz largest when the drops are 
larger [2], but also the loss fraction is largest initially. 
By the time RI = 0.5, the loss fraction is negligible. 
The oscillations in kr,,,/ti observed in the figure inset 
may be due to the inaccurate numerical evaluation of 
da/dt using a two step backward scheme. Since these 
oscillations occur in a region where ]r+~,~&] c 1, no 
further effort has been made to improve the accuracy. 

The loss fraction accounts only for the mass lost 
from the system as a result of the motion of the cluster 
surface, but does not account for the gain that occurs 
when mass is brought into the cluster by turbulent 
transfer from the surroundings. As a result, its value 
as a diagnostic is limited to indicating the relative 
importance of gaseous mass lost from the cluster to 
gaseous mass gained inside the cluster through evap- 
oration: In contrast, the global mass conservation 
equation for the cluster does account appropriately 
for mass addition due to turbulent transport. 

The variation of the final position of the cluster 
surface with respect to its initial position is shown vs 

4" in Fig. 5. As expected, for lean mixtures and dilute 
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FIG. 2. Variation of a non-dimensional evaporation time with the initial air/fuel mass ratio: Tix = 
1000 K, Tis = 350 K, Y&, = 0, r?” = 10 cm. R" = 2 x IO-' cm. 

sprays, when there is not much gaseous mass added 
through evaporation, the cluster maintains its original 
size. As 4” decreases the cluster shrinks in size due to 
internal cooling. However, this shrinkage is smaller 
for turbulence model 2, as the final temperature was 
also observed to be higher. This contraction is con- 
sistent with the observed decrease in pressure inside 
the cluster when evaporation occurred in a cluster that 
was adiabatically insulated from the surroundings [2]. 
This pressure drop was larger with decreasing +“, 
which means that despite the very large increase in 
density in the very rich cases, the cooling effect was 
dominant. 

If the mass lost from the cluster is integrated in 
time, converted into a volume by dividing by pp”, and 
finally nondimensionalized by the initial volume of 

the cluster one finds that at fixed R, this value is larger 
for smaller q5” and at fixed 4” it is larger for turbulence 
model 1. When this value is added, at fixed R ,, to the 
non-dimensionalized cluster volume, one finds that 
for a given C/J” the sum is larger for turbulent model 
2. In all cases this sum is consistently smaller than 
unity and increases with the value of 4” approaching 
unity for large values of 4”. These results confirm the 
fact that even when one accounts for the mass escap- 
ing from the cluster, contraction due to cooling of the 
gases occurs. With turbulence model 1 more of the 
gas escapes to the surroundings and with turbulence 
model 2 less of a contraction occurs. 

It is worth mentioning that the differences observed 
between the behavior of the clusters when the two 
turbulence models are considered is not due to the 

i ‘I’,‘, r ‘i” ’ “’ ” x COMPLETE EVAPORATION 
0 SATURATION BEFORE 

COMPLETE EVAPORATION 

0-z 0.6 

\ 0.5 

-mg 0.4 

0. 3 

0. 2 

FIG. 3. Variation of f&,/0$ and p’,/p& with the initial air/fuel mass ratio: T& = 1000 K, Tl> = 350 K, 
Y,g,, = 0, R”’ = 10 cm, R" = 2 x 10e3 cm. 
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350 K, 

fact that the drops evaporate in different regimes [2] 
(diffusive, convective-diffusive or convective) but 
rather due to the different exchange processes between 
the clusters and their surroundings. Figure 5 illus- 
trates the fact that the initial penetration distance, 
which indicates the evaporation regime [2], varies only 
with u,” and C#J” and not with the turbulence model. At 
fixed c#J’, as R, decreases the penetration ratios con- 
tinue to be extremely close for the two turbulence 
models. 

The effect of varying the cluster size can be seen in 
Fig. 6 where a non-dimensional evaporation time is 
plotted vs the initial size of the cluster for both tur- 
bulence models. For a stoichiometric mixture neither 
the initial size of the cluster nor the turbulence model 
influence very much the evaporation time ; however, 
there is a slight tendency to a larger evaporation time 

with increased initial size. This effect is very substantial 
for rich mixtures and is observed for both turbulence 
models. There are several reasons for this. First, since 
up is fixed, as the cluster becomes smaller, the initial 
penetration ratio is larger and the drops evaporate in a 
regime which changes from diffusive to predominantly 
convective thus reducing the evaporation time. This 
is illustrated in Fig. 7 where (L,/R”)’ is plotted vs R” O. 
In contrast, for stoichiometric mixtures the evap- 
oration regime is convective+Iiffusive to convective 
and as it has been pointed out previously [2], con- 
vective effects always dominate diffusive effects thus 
determining the evaporation time. Second, although 
at fixed 4’, no is the same for all sizes of clusters, N 
decreases with R”‘. This leads to a more pronounced 
interaction with the surroundings and thus faster 
evaporation. 
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FIG. 5. Initial penetration ratio and final position of the cluster surface vs the initial air/fuel mass ratio : 
Tza = 1000 K, Tz8 = 3.50 K, YF,, = 0, R"" = 10 cm, R" = 2 x 10m3 cm. 
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INITIAL CLUSTER RADIUS, ?i", cm 

FE. 6. Variation of a non-dimensional evaporation time with the initial radius of the cluster: Ti‘S = 
1000 K. Ti, = 350 K, Yf,,, = 0. R” = 2 x IO ’ cm, u” = 500 cm s ‘, 

The total effect upon the final cluster size is pre- 
sented in Fig. 7. In all cases larger clusters contract 
more, relative to their initial size, than do smaller 
clusters due again to the cooling effect discussed 
above. A smaller number of drops in a cluster results 
in less cooling of the gas phase at complete evap- 
oration and faster evaporation. 

Similarly to the discussion pertinent to Fig. 2, tur- 
bulence model 2 predicts shorter evaporation times 
for dense clusters and the same evaporation time for 
dilute clusters as does turbulence model 1. The trends 
regarding af/$!’ are also similar. 

0. 3 1. 0 
a4 cm 

3. 0 1c 

FIG. 7. Initial penetration ratio and final position of the 
cluster surface vs the initial radius of the cluster: 
Tia = 1000 K, Tis = 350 K, Yi,, = 0, R0 = 2 x IO-’ cm, 

up = 500 cm s-‘. 

In order to gain a better understanding about the 
behavior of the cluster we display in Figs. 8 and 9 the 
history of &/a’. Since there is a certain uncertainty 
about the time taken to evaporate, and since it 
depends strongly upon the evaporation model, in 
order to partially eliminate this uncertainty, the plots 
are n!ade vs R , Figure 8 represents the situation for a 
rich mixture, whereas Fig. 9 represents the situation 
for a stoichiometric mixture. The striking feature in 
Fig. 8 is the initial drop in B/R”’ which, as discussed 
above, is due to the cooling of the gas phase and 
the continual heating of the drops. Following this 
decrease in a/l?‘, a minimum in this value is reached, 
after which there ensues a recovery. This recovery is 
due to the unvitiated (by fuel) hot gas brought in 
through turbulent transport from the gas phase sur- 
rounding the cluster. As expected, turbulence model 
2 offers more possibilities for recovery. As the cluster 
is smaller and the number of drops decreases, there is 
less of a drop in I?/B’, the minimum a/R”’ occurs 
earlier with respect to R, and the final value of i?/fi’ 
is closer to unity. Figure 9 shows that in contrast to 
the rich mixtures, for stoichiometric mixtures there is 
no minimum in l?/R”‘; the size of the cluster con- 
tinuously decreases with R,. However, there is less of 
a cluster shrinkage due to the fact that there is less 
mass in the cluster, less cooling and less mass loss. 

The practical implications of these results with 
regard to optimization of evaporation is straight- 
forward. Turbulence should be induced in the gas in 
which the spray is injected prior to or at the same time 
as injection. Turbulence can help to evaporate the 
drops of the spray through two processes. First it 
can break the spray into clusters and the smaller the 
cluster, the shorter the evaporation time. Second, it 
brings in unvitiated (by fuel) hot gas from the sur- 
rounding of the clusters thereby enhancing and sup- 
porting evaporation. Moreover, the results show that 
evaporation of drops in dense clusters can be con- 
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FIG. 8. Variation of the residual cluster radius with R, for different initial cluster radii for a dense 
cluster of drops: Tza = 1000 K, r: = 350 K, Y& = 0, R” = 2x IO-’ cm, up = 500 cm s-‘, 4’ = 1.57 

(no = 9.44x lO’cm-‘; R; = 13.3). 

trolled whereas when they are in a dilute configuration 
it cannot. This means that evaporation control should 
be envisaged near the injector in order to be truly 
effective, rather than further along the combustor. 

5. SUMMARY AND CONCLUSIONS 

The model presented above is one example of 
subgrid models that are needed to describe spray evap- 
oration and combustion. As such, the predictions of 
the model pertain to the global behavior of clusters 
of drops rather than the detail of the behavior of each 
drop in the cluster and the difference in behavior 
between the drops belonging to the same cluster. 

Despite the simplicity of the turbulence models used 
herein there are many important aspects that have 
been elucidated by the results obtained with the two 
models. First, in contrast to dilute clusters of drops, 
the evaporation of very dense clusters of drops is 
greatly affected by the initial level of turbulence in the 
surrounding gas. Not only is the evaporation time 
affected but also it is shown that by having turbulence 
initially present rather than letting it build with time, 
one can obtain complete evaporation before satu- 
ration in situations where otherwise saturation was 
obtained before complete evaporation. Thus, for 
dense sprays the transfer processes between the gases 
in the cluster and the surroundings are crucial in deter- 
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FIG. 9. Variation of the residual cluster radius with R, for different initial cluster radii for a dilute 
cluster of drops: Tia = 1000 K, Tk = 350 K, Y&. = 0, R" = 2 x 1Om3 cm, u,” = 500 cm s-‘, 6’ = 15.7 

(no = 8.52 x 102 cm+; R; = 29.6). 
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mining the outcome of evaporation. Between these 
regimes of very dense and dilute clusters there exists 
a regime where both the history of turbulence and the 
initial relative velocity between drops and gases can 

be important control parameters. 
Furthermore, the results show that the evaporation 

time of a dilute cluster cannot be decreased by reduc- 
ing its initial size while keeping the initial air/fuel 
mass ratio constant. In contrast, for dense clusters, the 
evaporation time decreases with the initial size of the 

cluster at the same initial air/fuel mass ratio. More- 
over, by having turbulence present initially, rather 
than letting it build up, the evaporation time of 
the cluster can be further decreased. 

Thus gas phase turbulence can be important in 
reducing the evaporation time in two ways. First, 
turbulence breaks up the spray in small size clusters 
right at the exit of the atomizer, where the spray is 
dense. Second, turbulence acts as a vehicle for trans- 
porting mass, species and heat to the cluster, thus 
supporting evaporation. The above results have 
shown that turbulence is a strong control parameter 
for dense clusters but it is not a control parameter for 

dilute clusters. This means that in order to influence 
evaporation in sprays one should install turbulence 
enhancement devices right at the exit of the atomizer 

where the spray is dense and not further down the 
length of the combustor where the spray has become 
dilute. Indeed it is well known empirically that this 
is true and the present results provide a theoretical 
justification for a well-known fact. However, it would 
be very desirable to have a set of experiments to com- 
pare with the predictions of the present theory. The 
present conclusions show that most of the sensitivity 
of our model and thus most of the control in an 

experiment can be expected in the dense-cluster 
regime. This makes a comparison so much more 
difficult because it is precisely in this regime that 

experiments are most difficult to perform because ol 
the lack of resolution. 

AcknoM/~~~!qcn?eflI.s--The research described in this papcl 
was performed by the Jet Propulsion Laboratory, California 
Institute of Technology, and was supported by the Air Force 
Office of Scientific Research, Directorate of Aerospace Sci- 
ences ; the Army Research Office, Engineering Sciences Div- 
ision, and the U.S. Department of Energy, Office of Energy 
Utilization Research, Energy Conversion and Utilization 
Technologies Program, through interagencies agreements 
with the National Aeronautics and Space Administration. 

REFERENCES 

N. A. Chigier, C. P. Mao and V. Oechsle, Structure of 
air-assist atomizer spray, Paper I-6A, CSS/WSS/ 
Combustion Institute Spring Meeting, April (1985) ; 
also private communication. 
J. Bellan and K. Harstad, The details of the convective 
evaporation of dense and dilute clusters of drops, Int. J. 
Heat Muss Transfer 30, 1083-1093 (1987). 
J. Bellan and K. Harstad, Analysis of the convective evap- 

oration of non dilute clusters of drops, Int. J. Heat MU.\ 
Tranqfer 30, 125-136 (1987). 
J. Bellan and R. Cuffel, A theory of non dilute spray 
evaporation based upon multiple drop interactions, Com- 
bustion Flame 51, 55-61 (1983). 
G. M. Hidy and J. R. Brock, The Dynamics oj’ Aero- 
colloidal S_vsterns, pp. 99-101. Pergamon Press, Oxford 
(1970). 
E. R. C. Eckert and R. M. Drake, Jr., Heat and Mu.r.s 
Transfer. McGraw-Hill, New York (1959). 
C. Kittel, Introduction to Solid State Physics, 3rd Edn. 
Wiley. New York (1966). 

APPENDIX 

As explained in Section 3 Q, is obtained as a function of 2 
from the conduction equation. The ten equations that are 
solved for the ten dependent variables identified at the end 
of Section 2 are as shown below. Define 

where the integrations are performed using Qa and Y,, as 
given by the approximation of equation (5). 

The equations solved are as follows : 

(11 .G= I-R; (A4) 

(2) C= -UC& g 

(.A6) (3) R, = [1+3y;i;Cd,]’ ’ 

1 
(4) C = -----_ln 1 + - --- 

i 

“&::!g: _~ 

-Z(R,) L R, A, rlQ, 

Lh” c C,,(p,D)“’ & ;_ , J 

(AS) 

(A7) 

(5) Y,,, = I+ (Y,,, - I) exp (C%(R , )) (‘48) 

du, 1 
(6) md - = - z 

dt 
Np,A,C,u,’ 

3 x 0.74 md 
+---J- -- Wu,u,C,,A,IN 

4nR> RO’ 
L49) 
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(8) 2= -N~~+N&$,e~(o;Fv,+y) 8 d 

dRz ur=& 
xR:=+p 1-L 1 

4nR’D” b,” e&yF”a+Y) 1 (All) 
where 

fig = N 
ij,” 

g(@@, P,,, YFvs, Y,,,, &, RI) 

+ l-O.74 R; 1 
-- 

0.74 3 e,(uYFva+y) 
1 G4W 

AF” = N 
P,” 

f(e,,, em, YF”,, Y~vsr &, R, ) 

l-O.74 R: Y,,, 
~- 

+ 0.74 3 e,,(~y,,+Y) 1 6414) 

J 

E2.j 
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EFFETS DE LA TURBULENCE PENDANT L’EVAPORATION DE GOU’ITES DANS 
DES GRAPPES 

R6sum&-On presente un modele d’evaporation de gouttelette dans des grappes et les mkcanismes d’bchange 
entre la grappe et la phase gazeuse environnante. Ce modele est developpk pour utiliser un modele de sous- 
khelle dans les calculs d’kvaporation et de combustion d’drosols et pour d&ire le comportement global 
de la grappe, la pression du gaz demeure constante pendant l’tvaporation et par suite le volume de la 
grappe et la densitk du nombre de gouttes varient. On considkre deux modeles de turbulence ; le premier 
d&it l’bvaporation dans l’environnement initialement sans turbulence laquelle se constitue au tours du 
temps ; le second meddle d&it l’kvaporation dans l’environnement lorsque la turbulence existe initialement. 
Les rhltats obtenus montrent que la turbulence augmente l’haporation et qu’elle est un facteur de 
commande de l’kvaporation des grappes t&s denses. Lorsque le rapport initial des masses air/combustible 
augmente, I la fois l’histoire de la turbulence et la vitesse relative initiale entre gouttes et gaz peuvent 
contrhler Rvaporation. On montre que le temps d’haporation diminue avec un accroissement initial des 
niveaux de turbulence. ou de la vitesse relative. Lorsque le rapport initial des masses air/combustible 
augmente encore plus et que la densitb initiale du nombre de gouttes entre le rkgime de dilution, aucun des 
deux param&res ne peut contr6ler l’kvaporation. Le temps d’kvaporation dkroit avec la diminution de la 
taille de la grappe pour des grappes de gouttes denses, tandis que la taille de la grappe n’est pas un facteur 

limitant pour les grappes dilukes. On discute des implications pratiques de ces rksultats. 
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EINFLUSS DER TURBULENZ AUF DIE VERDAMPFUNG VON TROPFEN IN 
SCHWARMEN 

Zusammenfassung-Ein Model1 fur die Tropfenverdampfung in Schwarmen und fiir die Austauschprozesse 
zwischen dem Schwarm und der umgebenden Gasphase wird vorgestellt. Dieses Mode11 wurde zur Be- 
rechnung der Spriihverdampfung und der Verbrennung entwickelt und beschreibt nur globale Ver- 
haltensmerkmale von Tropfenschwarmen. Der Gasdruck im Tropfenschwarm bleibt wahrend der Ver- 
dampfung konstant, als Folge davon variiert das Volumen des Tropfenschwarms und die Tropfenanzahl 
pro Volumeneinheit. Zwei Turbulenzmodelle werden herangezogen. Das erste Model1 beschreibt die 
Verdampfung von Tropfenschwarmen in einer Umgebung, die anf%nglich turbulenzfrei ist ; die Turbulenz 
baut sich erst mit der Zeit auf. Das zweite Model1 beschreibt die Verdampfung von Tropfenschwlrmen in 
einer Umgebung, in der von Anfang an Turbulenz vorliegt. Die mit diesen Modellen erhaltenen Ergebnisse 
zeigen, daI3 Turbulenz die Verdampfung begiinstigt und ein kontrollierender Parameter bei der Ver- 
dampfung von sehr dichten Tropfenschwarmen ist. Beispiele werden gezeigt, in denen mit dem ersten 
Turbulenzmodell Slttigung vor der vollstlndigen Verdampfung erhalten wurde, wogegen sich mit dem 
zweiten Turbulenzmodell das Gegenteil ergab. Steigt das Anfangs-Massenverhaltnis Luft/Brennstoff, so 
kann sowohl die Vorgeschichte der Turbulenz als such die Anfangs-Relativgeschwindigkeit zwischen 
Tropfen und Gas die Verdampfung beeinflussen. Es wird gezeigt, da13 die Verdampfungszeit mit einer 
Erhijhung des Turbulenzgrades oder der Anfangs-Relativgeschwindigkeit abnimmt. Steigt das Anfangs- 
Massenverhaltnis Luft/Brennstoff weiter und fallt die Tropfenanzahl pro Volumeneinheit zu Beginn in den 
Bereich fur lockere Schwlrme, so beeinfluat keiner der beiden obengenannten Parameter die Verdampfung. 
Bei dichten Tropfenschwarmen verktirzt sich die Verdampfungszeit mit abnehmender GriiBe des 
Schwarms: bei lockeren SchwLrmen hat die GroDe keinen EinfluB. Die praktischen Folgerungen aus 

den Ergebnissen werden diskutiert. 

3QQEKTbI TYPBYnEHTHOCTW I-IPM I4CfIAPEHRM KJIACTEPOB KATIEJIb 

.4imoTa~a-TIpervraanena Moirenb ricnapemia rcnacrepoa xanenb B omicanbt npoueccbr 06breaa Memny 
KJIaCTepaM&I II HeCylqefi ra3OBOtiCpeAOii. Paspa6oTamraa MOAeJIb,aBJIRaCb nOACCrO'IHO~,HCnOJIb3yeTCa 

AJE~ pacnera ricnaperiax n roperma pacnbmoa xanenb, a n03robfy ynbirbmaer ronbxo mo6anbsbIe oco- 

6eHHOCTEI nose~emia ricnaparonnixcr xnacrepoa. IIpennonaraerca, STO B npouecce ucnapeHua Aasne- 

we ra3a B Knacrepe 0craeTca nocronHHbIM, TaK ST0 nepeMeHHblw aanaIoTca 06%~ Knacrepa B 

IIJIOTHOCTb 'IWCJIa KaneJIb B HeM.PaCCMOTpeIibI ABe MOAeJIH Typ6yJIeHTHOCTH.nepBaa OnWCbIBaeT IiCna- 

peIise KnacTepa B cpene, B KOTO~O~~ BHawuIe Typ6yJIeHTHOCTb OTCyTCTByeT, no 210AKnIosaeTca11 co 

speMeHeb4 no Mepe wcnapeHwI KnacTepoa. BTopaa Mortenb 0nHcbIaaeT ucnapeHne KnacTepa B cpeAe c 

Ha'IaJIbHOfi Typ6yJIeHTHOCTbIO. COrJIaCIiO o6ewM MOAeJIaM Typ6yJIeHTHCCTb yCKOpaeT UcnapeHHe, 

ffBnaacb 0npeAenlnowiM 4aKTopoM npw HcnapeHHsf 0qeHb nnoTIwx wacrepoe,rIpHaeAeHbInpIiMepbl, 

B KOTOPMX noKa3aHo,Y~o c1icnonb3oea~ne~nepeofi hfonenri IiacbweHIieHacTynaeTAononIioro wcna- 

pe~i~ia Kanenb, a c ncnonb3oBaHsieM BTOPO~~ HaBnIoAaeTcr npoT&iBononoxuibdt ~@#%KT. npsi ynensi~e- 
HWW HaqanbHoro Maccoaoro oTHouIeH5ia Bo3Ayx/ropxwee Iicnapeiwe ~ZIBHCWT KaK 0~ npeAbIcTopau 

Typ6yJIeHTHOCTIi,TaK U OT Ha'WIbHOfi OTHOCWTeJIbHOti CKOpOCTH AaEIXWHHa KaneJIb H ra3a. nOKiX3iiH0, 

'IT0 BpeMa IiCnapeHHa yMeHbIlIaeTCa, eCJIU HaWJIbHbIfi ypOBeHb Typ6yJIeHTHOCTIi HJIH OTHOCHTe~Haa 

CKOpOCTb BO3paCTaloT. npW CyIIIeCTBeHHOM yBeJI&i'IeHIiH HaYaJIbHOrO MaCCOBOrO OTHOIIIeHHa B03AyX/ 

TOnnHBO Ii yMeHbUIeHHH HaWJIbHOii IIAOTHOCTH wcna Kanenb A0 pa3pexeHHoro pexwMa HB OAUH Ii3 

BbIUIeyKa3aHHblX napaMeTpOB He OKa3bIBaeT peIIIaEOUIer0 BJIHffHIiR Ha SiCnapeHIie. KpoMe TOrO IlOKa- 

3aHo,S~o ~peMa HcnapeHuryMeHbluaeTcncyMeIiblueHlleMpasMepaKnacTepanpH 6onbmoirnnornocrn 
Yncna Kanenb, a npn ~anoii nnoTHocTa pa3Mep KnacTepa He aBnaeTcn onpeAenrIouwih4 4aKTopoM. 


